Characterization of the Cultivable Microbiota of Sprouts and Their Potential for Application As Protective Cultures

Characterization of the cultivable microbiota of sprouts and their potential for application as protective cultures.

Syst Appl Microbiol. 2007 Sep;30(6):483-93. Epub 2007 May 18.

Weiss A, Hertel C, Grothe S, Ha D, Hammes WP.

Institute of Food Technology, University of Hohenheim, Garbenstr. 28, D-70599 Stuttgart, Germany.

 

The microbiota of ten seeds and ready-to-eat sprouts produced thereof was characterized by bacteriological culture and denaturing gradient gel electrophoresis (DGGE) of amplified DNA fragments of the 16S rRNA gene. The predominant bacterial biota of hydroponically grown sprouts mainly consisted of enterobacteria, pseudomonades and lactic acid bacteria (LAB). For adzuki, alfalfa, mung bean, radish, sesame and wheat, the ratio of these bacterial groups changed strongly in the course of germination, whereas for broccoli, red cabbage, rye and green pea the ratio remained unchanged. Within the pseudomonades, Pseudomonas gesardii and Pseudomonas putida have been isolated and strains of the potentially pathogenic species Enterobacter cancerogenes and Pantoea agglomerans were found as part of the main microbiota on hydroponically grown sprouts. In addition to the microbiota of the whole seedlings, the microbiota of root, hypocotyl and seed leafs were examined for alfalfa, radish and mung bean sprouts. The highest and lowest total counts for aerobic bacteria were found on seed leafs and hypocotyls, respectively. On the other hand, the highest numbers for LAB on sprouts were found on the hypocotyl. When sprouting occurred under the agricultural conditions, e.g. in soil, the dominating microbiota changed from enterobacteria to pseudomonades for mung beans and alfalfa sprouts. No pathogenic enterobacteria have been isolated from these sprout types. Within the pseudomonades group, Pseudomonas jessenii and Pseudomonas brassicacearum were found as dominating species on all seedling parts from soil samples. In practical experiments, a strain of P. jessenii was found to exhibit a potential for use as protective culture, as it suppresses the growth of pathogenic enterobacteria on ready-to-eat sprouts.