Modulation of the Metabolism of Airborne Pollutants by Glucoraphanin

Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China.

Carcinogenesis. 2011 Nov 11.

Kensler TW, Ng D, Carmella SG, Chen M, Jacobson LP, Muñoz A, Egner PA, Chen JG, Qian GS, Chen TY, Fahey JW, Talalay P, Groopman JD, Yuan JM, Hecht SS.

Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.

Abstract

Epidemiological evidence has suggested that consumption of a diet rich in cruciferous vegetables reduces the risk of several types of cancers and chronic degenerative diseases. In particular, broccoli sprouts are a convenient and rich source of the glucosinolate, glucoraphanin, which can release the chemopreventive agent, sulforaphane, an inducer of glutathione S-transferases. Two broccoli sprout-derived beverages, one sulforaphane-rich (SFR) and the other glucoraphanin-rich (GRR), were evaluated for pharmacodynamic action in a crossover clinical trial design. Study participants were recruited from the farming community of He Zuo Township, Qidong, China, previously documented to have a high incidence of hepatocellular carcinoma with concomitant exposures to aflatoxin and more recently characterized with exposures to substantive levels of airborne pollutants. Fifty healthy participants were randomized into two treatment arms. The study protocol was as follows: a 5 days run-in period, a 7 days administration of beverage, a 5 days washout period and a 7 days administration of the opposite beverage. Urinary excretion of the mercapturic acids of acrolein, crotonaldehyde, ethylene oxide and benzene were measured both pre- and postinterventions using liquid chromatography tandem mass spectrometry. Statistically significant increases of 20-50% in the levels of excretion of glutathione-derived conjugates of acrolein, crotonaldehyde and benzene were seen in individuals receiving SFR, GRR or both compared with their preintervention baseline values. No significant differences were seen between the effects of SFR versus GRR. Intervention with broccoli sprouts may enhance detoxication of airborne pollutants and attenuate their associated health risks.