Proteinases Involved in the Degradation of Trypsin Inhibitor in Germinating Mung Beans

Proteinases involved in the degradation of trypsin inhibitor in germinating mung beans.
Acta Biochim Pol 1983;30(2):139-48
Wilson KA, Tan-Wilson AL.

The mung bean (Vigna radiata (L.) Wilczek) trypsin inhibitor (MBTI) is rapidly modified by limited proteolysis during the early stages of seedling growth. Using an electrophoretic assay that separates the unmodified inhibitor (MBTI-F) and the first two modified species (MBTI-E and -C), a pH optimum of approximately 4 was found for the modification reaction. The inhibitor modifying activity is initially low in ungerminated seeds, with the reaction F leads to E being the primary reaction catalyzed. Activity catalyzing the production of MBTI-C appears on the first day of germination. This activity (F leads to E leads to C) increases up to 6 days after inhibition, at which time the cotyledons begin to abscise. The activity converting MBTI-F and -E to MBTI-C was strongly inhibited by phenylmethylsulfonyl fluoride (3.3 mM) but only weakly by iodoacetate (9 mM) and not at all by pepstatin A (9 microM), leupeptin (18 microM), or EDTA (5 mM). These results suggest the involvement of proteinases other than the major endopeptidase of the germinating seed, vicilin peptidohydrolase. This conclusion is further supported by gel filtration of the extracts of cotyledons on Sephacryl S-200. At least three proteinases are present in germinated cotyledons capable of modifying MBTI-F to MBTI-C and/or -E. All are distinguishable from vicilin peptidohydrolase on the basis of their molecular weight and inhibition by low molecular weight organic reagents.